Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 989-999, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621906

RESUMO

This study aims to investigate the effect of Naotaifang(NTF) on the proteins associated with microglial polarization and glial scar in the rat model of cerebral ischemia reperfusion injury(CIRI). The CIRI model was established by middle cerebral artery occlusion/reperfusion. The 48 successfully modeled rats were randomized into model 7 d, model 14 d, NTF 7 d, and NTF 14 d groups(n=12). In addition, 12 SD rats were selected as the sham group. The NTF group was administrated with NTF suspension at 27 g·kg~(-1)·d~(-1) by gavage, and the sham, model 7 d, and model 14 d groups were administrated with the same volume of normal saline every day by gavage for 7 and 14 days, respectively. After the intervention, Longa score was evaluated. The infarct volume was measured by 2,3,5-triphenyl-2H-tetrazolium chloride(TTC) staining. Morris water maze and open field tests were carried out to evaluate the spatial learning, memory, cognitive function, and anxiety degree of rats. Hematoxylin-eosin(HE) staining was employed to observe the morphological structure and damage of the brain tissue. The immunofluorescence assay was employed to measure the expression of glial fibrillary acidic protein(GFAP) and glial scar. Western blot was employed to determine the protein levels of GFAP, neurocan, phosphacan, CD206, arginase-1(Arg-1), interleukin(IL)-1ß, IL-6, and IL-4. Compared with the sham, model 7 d and model 14 d groups showed cerebral infarction of different degrees, severe pathological injury of cerebral cortex and hippocampus, neurological impairment, reduced spatial learning and memory, cognitive dysfunction, severe anxiety, astrocyte hyperplasia, thickening penumbra glial scar, and up-regulated protein levels of IL-1ß, IL-6, GFAP, neurocan, phosphacan, CD206, and Arg-1(P<0.01). Compared with the model group, NTF 7 d and NTF 14 d groups improved spatial learning, memory, and cognitive function, reduced anxiety, improved nerve function, reduced cerebral infarction volume, reduced astrocyte hyperplasia, thinned penumbra glial scar, down-regulated the protein levels of GFAP, neurocan, phosphacan, IL-6, and IL-1ß, and up-regulated the protein levels of IL-4, CD206, and Arg-1(P<0.05 or P<0.01). NTF exerts a neuroprotective effect on CIRI by inducing the M2 polarization of microglia, inhibiting inflammatory response, and reducing the formation of glial scar.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão , Ratos , Animais , Microglia/metabolismo , Gliose/patologia , Ratos Sprague-Dawley , Hiperplasia , Interleucina-4 , Interleucina-6 , Neurocam , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Infarto da Artéria Cerebral Média , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
2.
Sci Rep ; 14(1): 6362, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493204

RESUMO

Despite advancements in cancer immunotherapy, solid tumors remain formidable challenges. In glioma, profound inter- and intra-tumoral heterogeneity of antigen landscape hampers therapeutic development. Therefore, it is critical to consider alternative sources to expand the repertoire of targetable (neo-)antigens and improve therapeutic outcomes. Accumulating evidence suggests that tumor-specific alternative splicing (AS) could be an untapped reservoir of antigens. In this study, we investigated tumor-specific AS events in glioma, focusing on those predicted to generate major histocompatibility complex (MHC)-presentation-independent, cell-surface antigens that could be targeted by antibodies and chimeric antigen receptor-T cells. We systematically analyzed bulk RNA-sequencing datasets comparing 429 tumor samples (from The Cancer Genome Atlas) and 9166 normal tissue samples (from the Genotype-Tissue Expression project), and identified 13 AS events in 7 genes predicted to be expressed in more than 10% of the patients, including PTPRZ1 and BCAN, which were corroborated by an external RNA-sequencing dataset. Subsequently, we validated our predictions and elucidated the complexity of the isoforms using full-length transcript amplicon sequencing on patient-derived glioblastoma cells. However, analyses of the RNA-sequencing datasets of spatially mapped and longitudinally collected clinical tumor samples unveiled remarkable spatiotemporal heterogeneity of the candidate AS events. Furthermore, proteomics analysis did not reveal any peptide spectra matching the putative antigens. Our investigation illustrated the diverse characteristics of the tumor-specific AS events and the challenges of antigen exploration due to their notable spatiotemporal heterogeneity and elusive nature at the protein levels. Redirecting future efforts toward intracellular, MHC-presented antigens could offer a more viable avenue.


Assuntos
Glioblastoma , Glioma , Humanos , Processamento Alternativo , Antígenos de Superfície , Glioma/genética , Antígenos de Histocompatibilidade , RNA , Antígenos de Neoplasias/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores
3.
Pathol Res Pract ; 255: 155167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324963

RESUMO

OBJECTIVE: Clear cell papillary renal cell tumour (CCPRCT) is a kind of renal epithelial cell tumor, and was renamed by the 5th WHO due to its specific epidemiology and clinicopathological characteristics. However, the biological mechanism and molecular basis of CCPRCT still need to be further clarified. This study aims to comprehensively evaluate clinicopathologic and molecular characteristics of CCPRCC, and particularly compare it with other more prevalent subtypes of renal cell carcinoma. METHODS: 12 cases of CCPRCT were collected for analyzing the clinicopathological characteristics. Then, whole-exome sequencing (WES) was employed to reveal the genetic profiles, followed by comparison with the molecular genetic alterations identified in ccRCC (341) and pRCC (200) datasets obtained from the TCGA database. RESULTS: Of the 12 CCPRCT cases, the male-to-female ratio was 4:1 with a mean age of 49.5 years (48.5 ± 10.5) at diagnosis. All patients were diagnosed accidentally during routine physical examinations. All tumors (12/12, 100%)had a solid-cystic appearance with a well-defined fibrous capsule. The median size of the tumors was 3 cm (2.98 ± 1.2). Histologically, the cystic papillary structures were considered to be prominent, lined with cuboidal tumor cells away from basement membrane. The tumor cells were moderately atypia equivalent to grade 1 or grade 2 according to the ISUP nuclear grading system. Typically, the tumor cell diffusely positive for CK7 and CAIX in a "cup-like" pattern. The results of WES revealed recurrent gene alterations (mainly missense mutation) of TTN and FLT in 4 cases (4/12, 33.3%), respectively, of which, the alteration of FLT was not observed in ccRCC and pRCC of the TCGA database. Other gene alterations including POTEC (1 cases), PRADC1 (1 cases), ZZZ3 (1 case) and PTPRZ1 (1 case), etc. Moreover, all of the CCPRCT cases displayed a lower tumor mutation burden (TMB) compared to ccRCC and pRCC with median TMB of 1.04 (range: 1.94 ± 2.74). None of the patients experienced tumor metastasis, recurrence, or tumor-related deaths. CONCLUSION: CCPRCT is a renal epithelial cell tumor characterized by specific clinical and pathological features. Our study provides additional evidence supporting the favorable prognosis of CCPRCT. Furthermore, the potential molecular alterations were uncovered by this study in CCPRCT such as the FLT family and TTN. However, due to the limited sample size, larger studies are required to validate these findings.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Biomarcadores Tumorais/genética , Prognóstico , Organização Mundial da Saúde , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores
4.
Epigenomics ; 16(4): 215-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38318853

RESUMO

Background: Triple-negative breast cancer (TNBC) is a subtype of BC with high rates of mortality. The mechanism of PTPRG-AS1 in ferroptosis of TNBC was investigated. Methods: Chromatin immunoprecipitation and dual-luciferase reporter assays were used to measure intermolecular relationships. MTT and colony formation assays detected cell viability and proliferation. Kits detected Fe2+ and reactive oxygen species levels. The role of PTPRG-AS1 in tumor growth was analyzed in vivo. Results: PTPRG-AS1 was increased in TNBC tissues and cells. PTPRG-AS1 silencing increased the reduction of glutathione and GPX4, increased Fe2+ and reactive oxygen species in erastin-treated cells and inhibited proliferation. POU2F2 transcriptionally upregulated PTPRG-AS1. PTPRG-AS1 targeted miR-376c-3p to upregulate SLC7A11. PTPRG-AS1 knockdown suppressed tumor growth in vivo. Conclusion: POU2F2 transcriptionally activates PTPRG-AS1 to modulate ferroptosis and proliferation by miR-376c-3p/SLC7A11, promoting TNBC.


Triple-negative breast cancer (TNBC) is a kind of breast cancer with high recurrence and low survival rates. Activation of the ferroptosis pathway can inhibit BC proliferation and distant metastasis. Therefore, identifying effective biomarkers and molecular mechanisms of ferroptosis in TNBC is important for its earlier detection and therapy. PTPRG-AS1 is a new type of lncRNA discovered in recent years that is increased in various diseases and is related to prognosis. In the present study, the authors found that POU2F2 promoted PTPRG-AS1 transcription. PTPRG-AS1 knockdown activated ferroptosis in TNBC and inhibited proliferation. Mechanistically, PTPRG-AS1 targeted miR-376c-3p to upregulate SLC7A11, thereby inhibiting ferroptosis and promoting TNBC development. These results indicate that PTPRG-AS1 is a possible therapeutic target in TNBC.


Assuntos
Ferroptose , MicroRNAs , Fator 2 de Transcrição de Octâmero , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Sistema y+ de Transporte de Aminoácidos/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator 2 de Transcrição de Octâmero/genética , Espécies Reativas de Oxigênio , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima
5.
BMC Neurol ; 24(1): 74, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383423

RESUMO

BACKGROUND: Anaplastic ependymoma and H3K27M-mutant diffuse midline glioma are two common subtypes of brain tumors with poor long-term prognosis. The present study analyzed and compared the differences in cell types between two tumors by single-cell RNA sequencing (scRNA-seq) technology. METHODS: ScRNA-seq was performed to profile cells from cancer tissue from anaplastic ependymoma patient and H3K27M-mutant diffuse midline glioma patient. Cell clustering, marker gene identification, cell type annotation, copy number variation analysis and function analysis of differentially expressed genes were then performed. RESULTS: A total of 11,219 cells were obtained from anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and these cells categorized into 12 distinct clusters. Each cell cluster could be characterized with specific cell markers to indicate cellular heterogeneity. Five cell types were annotated in each sample, including astrocyte, oligodendrocytes, microglial cell, neural progenitor cell and immune cell. The cluster types and proportion of cell types were not consistent between the two brain tumors. Functional analyses suggest that these cell clusters are involved in tumor-associated pathways, with slight differences in the cells of origin between the two tumors. In addition, cell communication analysis showed that the NRG3-ERBB4 pair is a key Ligand-receptor pair for anaplastic ependymoma, while in H3K27M-mutant diffuse midline glioma it is the PTN-PTPRZ1 pair that establishes contact with other cells. CONCLUSION: There was intratumor heterogeneity in anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and that the subtype differences may be due to differences in the origin of the cells.


Assuntos
Neoplasias Encefálicas , Ependimoma , Glioma , Humanos , Glioma/genética , Glioma/patologia , Histonas/genética , Variações do Número de Cópias de DNA , Mutação/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ependimoma/genética , Análise de Sequência de RNA , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética
6.
Exp Mol Pathol ; 135: 104882, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237798

RESUMO

Little is known as to whether there may be any pathogenetic link between pulmonary carcinoids and neuroendocrine carcinomas (NECs). A gene signature we previously found to cluster pulmonary carcinoids, large cell neuroendocrine carcinoma (LCNEC) and small cell lung carcinoma (SCLC), and which encompassed MEN1, MYC, MYCL1, RICTOR, RB1, SDHA, SRC and TP53 mutations or copy number variations (CNVs), was used to reclassify an independent cohort of 54 neuroendocrine neoplasms (NENs) [31 typical carcinoids (TC), 11 atypical carcinoids (AC) and 12 SCLC], by means of transcriptome and mutation data. Unsupervised clustering analysis identified two histology-independent clusters, namely CL1 and CL2, where 17/42 (40.5%) carcinoids and all the SCLC samples fell into the latter. CL2 carcinoids affected survival adversely, were enriched in T to G transversions or T > C/C > T transitions in the context of specific mutational signatures, presented with at least 1.5-fold change (FC) increase of gene mutations including TSC2, SMARCA2, SMARCA4, ERBB4 and PTPRZ1, differed for gene expression and showed epigenetic changes in charge of MYC and MTORC1 pathways, cellular senescence, inflammation, high-plasticity cell state and immune system exhaustion. Similar results were also found in two other independent validation sets comprising 101 lung NENs (24 carcinoids, 21 SCLC and 56 LCNEC) and 30 carcinoids, respectively. We herein confirmed an unexpected sharing of molecular traits along the spectrum of lung NENs, with a subset of genomically distinct aggressive carcinoids sharing molecular features of high-grade neuroendocrine neoplasms.


Assuntos
Tumor Carcinoide , Carcinoma de Células Grandes , Carcinoma Neuroendócrino , Neoplasias Pulmonares , Tumores Neuroendócrinos , Humanos , Variações do Número de Cópias de DNA/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Carcinoma Neuroendócrino/genética , Tumor Carcinoide/genética , Tumor Carcinoide/patologia , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/patologia , Pulmão/patologia , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética
7.
Sci Rep ; 14(1): 27, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167429

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor. Recent findings highlighted the significance of viral microRNAs (miRs) in regulating post-transcriptional mRNA expression in various human conditions. Although HSV1 encodes viral miRs and affects the central nervous system, no study investigated the roles of HSV1-encoding miRs in GBM development. This study applied in silico approaches to investigate whether HSV1-encoding miRs are involved in GBM development and, if so, how they regulate tumor-suppressive/oncogenes expression in GBM. This study leveraged bioinformatics approaches to identify the potential effect of HSV1 miRs in GBM development. The GSE158284, GSE153679, and GSE182109 datasets were analyzed to identify differentially expressed genes in GBM tissues and cell lines using the limma package in the R software. The GSE182109 dataset was analyzed to determine gene expression at the single-cell levels using the Seurat package in the R software. The TCGA-GTEX, GDSC, CTRP, immunogenetic, and enrichment analyses were performed to study the impact of identified viral HSV1 miRs targets in GBM development. hsv1-miR-H6-3p is upregulated in GBM and can be responsible for EPB41L1 and SH3PXD2A downregulation in GBM tissues. Also, hsv1-miR-H1-5p is upregulated in GBM and can decrease the expression of MELK, FZD2, NOVA1, TMEM97, PTPRZ1, and PDGFC in GBM development. The single-cell RNA sequencing analyses have demonstrated that MELK, FZD2, NOVA1, TMEM97, PTPRZ1, and PDGFC are expressed in astrocytes residing in the GBM microenvironment. This study provides novel insights into the potential roles of HSV1 miRs in GBM pathogenesis and offers a reference for further studies on the significance of HSV1 miRs in GBM development.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Herpesvirus Humano 1 , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células , Microambiente Tumoral , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo
8.
Neuropharmacology ; 247: 109850, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295947

RESUMO

Adolescence is a critical period for brain maturation in which this organ undergoes critical plasticity mechanisms that increase its vulnerability to the effects of alcohol. Significantly, ethanol-induced disruption of hippocampal neurogenesis has been related to cognitive decline in adulthood. During adolescence, the maturation of perineuronal nets (PNNs), extracellular matrix structures highly affected by ethanol consumption, plays a fundamental role in neurogenesis and plasticity in the hippocampus. Receptor Protein Tyrosine Phosphatase (RPTP) ß/ζ is a critical anchor point for PNNs on the cell surface. Using the adolescent intermittent access to ethanol (IAE) model, we previously showed that MY10, a small-molecule inhibitor of RPTPß/ζ, reduces chronic ethanol consumption in adolescent male mice but not in females and prevents IAE-induced neurogenic loss in the male hippocampus. We have now tested if these effects of MY10 are related to sex-dependent modulatory actions on ethanol-induced effects in PNNs. Our findings suggest a complex interplay between alcohol exposure, neural structures, and sex-related differences in the modulation of PNNs and parvalbumin (PV)-positive cells in the hippocampus. In general, IAE increased the number of PV + cells in the female hippocampus and reduced PNNs intensity in different hippocampal regions, particularly in male mice. Notably, we found that pharmacological inhibition of RPTPß/ζ with MY10 regulates ethanol-induced alterations of PNNs intensity, which correlates with the protection of hippocampal neurogenesis from ethanol neurotoxic effects and may be related to the capacity of MY10 to increase the gene expression of key components of PNNs.


Assuntos
Etanol , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Camundongos , Masculino , Animais , Feminino , Etanol/farmacologia , Etanol/metabolismo , Matriz Extracelular/metabolismo , Hipocampo/metabolismo , Consumo de Bebidas Alcoólicas
9.
Cancer Epidemiol Biomarkers Prev ; 33(2): 234-243, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38051303

RESUMO

BACKGROUND: An increased risk of neurocognitive deficits, anxiety, and depression has been reported in childhood cancer survivors. METHODS: We analyzed associations of neurocognitive deficits, as well as anxiety and depression, with common and rare genetic variants derived from whole-exome sequencing data of acute lymphoblastic leukemia (ALL) survivors from the PETALE cohort. In addition, significant associations were assessed using stratified and multivariable analyses. Next, top-ranking common associations were analyzed in an independent SJLIFE replication cohort of ALL survivors. RESULTS: Significant associations were identified in the entire discovery cohort (N = 229) between the AK8 gene and changes in neurocognitive function, whereas PTPRZ1, MUC16, TNRC6C-AS1 were associated with anxiety. Following stratification according to sex, the ZNF382 gene was linked to a neurocognitive deficit in males, whereas APOL2 and C6orf165 were associated with anxiety and EXO5 with depression. Following stratification according to prognostic risk groups, the modulatory effect of rare variants on depression was additionally found in the CYP2W1 and PCMTD1 genes. In the replication SJLIFE cohort (N = 688), the male-specific association in the ZNF382 gene was not significant; however, a P value<0.05 was observed when the entire SJLIFE cohort was analyzed. ZNF382 was significant in males in the combined cohorts as shown by meta-analyses as well as the depression-associated gene EXO5. CONCLUSIONS: Further research is needed to confirm whether the current findings, along with other known risk factors, may be valuable in identifying patients at increased risk of these long-term complications. IMPACT: Our results suggest that specific genes may be related to increased neuropsychological consequences.


Assuntos
Depressão , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Masculino , Depressão/genética , Exoma , Sobreviventes , Ansiedade/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética
10.
Differentiation ; 135: 100738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38008592

RESUMO

Growing evidence has shown that besides the protein coding genes, the non-coding elements of the genome are indispensable for maintaining the property of self-renewal in human embryonic stem cells and in cell fate determination. However, the regulatory mechanisms and the landscape of interactions between the coding and non-coding elements is poorly understood. In this work, we used weighted gene co-expression network analysis (WGCNA) on transcriptomic data retrieved from RNA-seq and small RNA-seq experiments and reconstructed the core human pluripotency network (called PluriMLMiNet) consisting of 375 mRNA, 57 lncRNA and 207 miRNAs. Furthermore, we derived networks specific to the naïve and primed states of human pluripotency (called NaiveMLMiNet and PrimedMLMiNet respectively) that revealed a set of molecular markers (RPS6KA1, ZYG11A, ZNF695, ZNF273, and NLRP2 for naive state, and RAB34, TMEM178B, PTPRZ1, USP44, KIF1A and LRRN1 for primed state) which can be used to distinguish the pluripotent state from the non-pluripotent state and also to identify the intra-pluripotency states (i.e., naïve and primed state). The lncRNA DANT1 was found to be a crucial as it formed a bridge between the naive and primed state-specific networks. Analysis of the genes neighbouring DANT1 suggested its possible role as a competing endogenous RNA (ceRNA) for the induction and maintenance of human pluripotency. This was computationally validated by predicting the missing DANT1-miRNA interactions to complete the ceRNA circuit. Here we first report that DANT1 might harbour binding sites for miRNAs hsa-miR-30c-2-3p, hsa-miR-210-3p and hsa-let-7b-5p which may influence pluripotency.


Assuntos
Células-Tronco Embrionárias Humanas , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Células-Tronco Embrionárias Humanas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Proteínas de Ciclo Celular/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
11.
Sci Rep ; 13(1): 16419, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775676

RESUMO

Major depressive disorder (MDD) and chronic unpredictable stress (CUS) in animals feature comparable cellular and molecular disturbances that involve neurons and glial cells in gray and white matter (WM) in prefrontal brain areas. These same areas demonstrate disturbed connectivity with other brain regions in MDD and stress-related disorders. Functional connectivity ultimately depends on signal propagation along WM myelinated axons, and thus on the integrity of nodes of Ranvier (NRs) and their environment. Various glia-derived proteoglycans interact with NR axonal proteins to sustain NR function. It is unclear whether NR length and the content of associated proteoglycans is altered in prefrontal cortex (PFC) WM of human subjects with MDD and in experimentally stressed animals. The length of WM NRs in histological sections from the PFC of 10 controls and 10 MDD subjects, and from the PFC of control and CUS rats was measured. In addition, in WM of the same brain region, five proteoglycans, tenascin-R and NR protein neurofascin were immunostained or their levels measured with western blots. Analysis of covariance and t-tests were used for group comparisons. There was dramatic reduction of NR length in PFC WM in both MDD and CUS rats. Proteoglycan BRAL1 immunostaining was reduced at NRs and in overall WM of MDD subjects, as was versican in overall WM. Phosphacan immunostaining and levels were increased in both in MDD and CUS. Neurofascin immunostaining at NRs and in overall WM was significantly increased in MDD. Reduced length of NRs and increased phosphacan and neurocan in MDD and stressed animals suggest that morphological and proteoglycan changes at NRs in depression may be related to stress exposure and contribute to connectivity alterations. However, differences between MDD and CUS for some NR related markers may point to other mechanisms affecting the structure and function of NRs in MDD.


Assuntos
Transtorno Depressivo Maior , Substância Branca , Humanos , Ratos , Animais , Substância Branca/patologia , Nós Neurofibrosos/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Córtex Pré-Frontal/metabolismo , Versicanas/metabolismo
12.
J Biol Chem ; 299(9): 105128, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543361

RESUMO

Gliomas are the most prevalent primary tumor of the central nervous system. Despite advances in imaging technologies, neurosurgical techniques, and radiotherapy, a cure for high-grade glioma remains elusive. Several groups have reported that protein tyrosine phosphatase receptor type Z (PTPRZ) is highly expressed in glioblastoma, and that targeting PTPRZ attenuates tumor growth in mice. PTPRZ is modified with diverse glycan, including the PTPRZ-unique human natural killer-1 capped O-mannosyl core M2 glycans. However, the regulation and function of these unique glycans are unclear. Using CRISPR genome-editing technology, we first demonstrated that disruption of the PTPRZ gene in human glioma LN-229 cells resulted in profoundly reduced tumor growth in xenografted mice, confirming the potential of PTPRZ as a therapeutic target for glioma. Furthermore, multiple glycan analyses revealed that PTPRZ derived from glioma patients and from xenografted glioma expressed abundant levels of human natural killer-1-capped O-Man glycans via extrinsic signals. Finally, since deficiency of O-Man core M2 branching enzyme N-acetylglucosaminyltransferase IX (GnT-IX) was reported to reduce PTPRZ protein levels, we disrupted the GnT-IX gene in LN-229 cells and found a significant reduction of glioma growth both in vitro and in the xenograft model. These results suggest that the PTPR glycosylation enzyme GnT-IX may represent a promising therapeutic target for glioma.


Assuntos
Glioma , N-Acetilglucosaminiltransferases , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Animais , Humanos , Camundongos , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Glioma/fisiopatologia , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/metabolismo , Linhagem Celular Tumoral , Feminino , Camundongos SCID , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/deficiência , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Técnicas de Silenciamento de Genes
13.
Aging (Albany NY) ; 15(15): 7760-7780, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37556355

RESUMO

Glioblastoma (GBM) is the most malignant and prevalent primary brain tumor. In this study, weighted gene coexpression network analysis (WGCNA) was performed to analyze RNA binding protein (RBP) expression data from The Cancer Genome Atlas (TCGA) for the IDH-wild type GBM cohort. The CIBERSORT algorithm quantified the cellular composition of immune cells and was used to identify key modules associated with CD8+ T cell infiltration. Coexpression networks analysis and protein-protein interaction (PPI) network analysis was used to filter out central RBP genes. Eleven RBP genes, including MYEF2, MAPT, NOVA1, MAP2, TUBB2B, CDH10, TTYH1, PTPRZ1, SOX2, NOVA2 and SCG3, were identified as candidate CD8+ T cell infiltration-associated central genes. A Cox proportional hazards regression model and Kaplan-Meier analysis were applied to identify candidate biomarkers. MYEF2 was selected as a prognostic biomarker based on the results of prognostic analysis. Flow Cytometric Analysis indicated that MYEF2 expression was negatively correlated with dysfunctional CD8+ T cell markers. Kaplan-Meier survival analysis (based on IHC staining) revealed that GBM patients with elevated MYEF2 expression have a better prognosis. Knockdown of MYEF2 in GBM cells via in vitro assays was observed to promote cell proliferation and migration. Our study suggests that MYEF2 expression negatively correlates with T cell exhaustion and tumor progression, rendering it a potentially valuable prognostic biomarker for GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Prognóstico , Algoritmos , Complexo CD3 , Linfócitos T CD8-Positivos , Fatores Imunológicos , Regulação Neoplásica da Expressão Gênica , Antígeno Neuro-Oncológico Ventral , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores
14.
Cells ; 12(13)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37443767

RESUMO

During embryonic and fetal development, the cerebellum undergoes several histological changes that require a specific microenvironment. Pleiotrophin (PTN) has been related to cerebral and cerebellar cortex ontogenesis in different species. PTN signaling includes PTPRZ1, ALK, and NRP-1 receptors, which are implicated in cell differentiation, migration, and proliferation. However, its involvement in human cerebellar development has not been described so far. Therefore, we investigated whether PTN and its receptors were expressed in the human cerebellar cortex during fetal and early neonatal development. The expression profile of PTN and its receptors was analyzed using an immunohistochemical method. PTN, PTPRZ1, and NRP-1 were expressed from week 17 to the postnatal stage, with variable expression among granule cell precursors, glial cells, and Purkinje cells. ALK was only expressed during week 31. These results suggest that, in the fetal and neonatal human cerebellum, PTN is involved in cell communication through granule cell precursors, Bergmann glia, and Purkinje cells via PTPRZ1, NRP-1, and ALK signaling. This communication could be involved in cell proliferation and cellular migration. Overall, the present study represents the first characterization of PTN, PTPRZ1, ALK, and NRP-1 expression in human tissues, suggesting their involvement in cerebellar cortex development.


Assuntos
Córtex Cerebelar , Citocinas , Recém-Nascido , Humanos , Córtex Cerebelar/metabolismo , Citocinas/metabolismo , Proteínas de Transporte/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo
15.
Int J Cancer ; 153(5): 1051-1066, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260355

RESUMO

Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a transmembrane tyrosine phosphatase (TP) expressed in endothelial cells and required for stimulation of cell migration by vascular endothelial growth factor A165 (VEGFA165 ) and pleiotrophin (PTN). It is also over or under-expressed in various tumor types. In this study, we used genetically engineered Ptprz1-/- and Ptprz1+/+ mice to study mechanistic aspects of PTPRZ1 involvement in angiogenesis and investigate its role in lung adenocarcinoma (LUAD) growth. Ptprz1-/- lung microvascular endothelial cells (LMVEC) have increased angiogenic features compared with Ptprz1+/+ LMVEC, in line with the increased lung angiogenesis and the enhanced chemically induced LUAD growth in Ptprz1-/- compared with Ptprz1+/+ mice. In LUAD cells isolated from the lungs of urethane-treated mice, PTPRZ1 TP inhibition also enhanced proliferation and migration. Expression of beta 3 (ß3 ) integrin is decreased in Ptprz1-/- LMVEC, linked to enhanced VEGF receptor 2 (VEGFR2), c-Met tyrosine kinase (TK) and Akt kinase activities. However, only c-Met and Akt seem responsible for the enhanced endothelial cell activation in vitro and LUAD growth and angiogenesis in vivo in Ptprz1-/- mice. A selective PTPRZ1 TP inhibitor, VEGFA165 and PTN also activate c-Met and Akt in a PTPRZ1-dependent manner in endothelial cells, and their stimulatory effects are abolished by the c-Met TK inhibitor (TKI) crizotinib. Altogether, our data suggest that low PTPRZ1 expression is linked to worse LUAD prognosis and response to c-Met TKIs and uncover for the first time the role of PTPRZ1 in mediating c-Met activation by VEGFA and PTN.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Animais , Camundongos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Células Endoteliais/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tirosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo
16.
J Biol Chem ; 299(8): 104952, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356715

RESUMO

Neural plasticity, the ability to alter the structure and function of neural circuits, varies throughout the age of an individual. The end of the hyperplastic period in the central nervous system coincides with the appearance of honeycomb-like structures called perineuronal nets (PNNs) that surround a subset of neurons. PNNs are a condensed form of neural extracellular matrix that include the glycosaminoglycan hyaluronan and extracellular matrix proteins such as aggrecan and tenascin-R (TNR). PNNs are key regulators of developmental neural plasticity and cognitive functions, yet our current understanding of the molecular interactions that help assemble them remains limited. Disruption of Ptprz1, the gene encoding the receptor protein tyrosine phosphatase RPTPζ, altered the appearance of nets from a reticulated structure to puncta on the surface of cortical neuron bodies in adult mice. The structural alterations mirror those found in Tnr-/- mice, and TNR is absent from the net structures that form in dissociated cultures of Ptprz1-/- cortical neurons. These findings raised the possibility that TNR and RPTPζ cooperate to promote the assembly of PNNs. Here, we show that TNR associates with the RPTPζ ectodomain and provide a structural basis for these interactions. Furthermore, we show that RPTPζ forms an identical complex with tenascin-C, a homolog of TNR that also regulates neural plasticity. Finally, we demonstrate that mutating residues at the RPTPζ-TNR interface impairs the formation of PNNs in dissociated neuronal cultures. Overall, this work sets the stage for analyzing the roles of protein-protein interactions that underpin the formation of nets.


Assuntos
Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Tenascina , Animais , Camundongos , Tenascina/genética , Tenascina/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Matriz Extracelular/metabolismo , Agrecanas/metabolismo , Plasticidade Neuronal
17.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175798

RESUMO

Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a type V transmembrane tyrosine phosphatase that is highly expressed during embryonic development, while its expression during adulthood is limited. PTPRZ1 is highly detected in the central nervous system, affecting oligodendrocytes' survival and maturation. In gliomas, PTPRZ1 expression is significantly upregulated and is being studied as a potential cancer driver and as a target for therapy. PTPRZ1 expression is also increased in other cancer types, but there are no data on the potential functional significance of this finding. On the other hand, low PTPRZ1 expression seems to be related to a worse prognosis in some cancer types, suggesting that in some cases, it may act as a tumor-suppressor gene. These discrepancies may be due to our limited understanding of PTPRZ1 signaling and tumor microenvironments. In this review, we present evidence on the role of PTPRZ1 in angiogenesis and cancer and discuss the phenomenal differences among the different types of cancer, depending on the regulation of its tyrosine phosphatase activity or ligand binding. Clarifying the involved signaling pathways will lead to its efficient exploitation as a novel therapeutic target or as a biomarker, and the development of proper therapeutic approaches.


Assuntos
Glioma , Tirosina , Humanos , Transdução de Sinais , Proteínas de Transporte/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Microambiente Tumoral , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo
18.
Cells ; 12(7)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37048157

RESUMO

Open neural tube defects (NTDs) such as myelomeningocele (MMC) are debilitating and the most common congenital defects of the central nervous system. Despite their apparent clinical importance, the existing early prenatal diagnostic options for these defects remain limited. Using a well-accepted retinoic-acid-induced model of MMC established in fetal rats, we discovered that neurocan and phosphacan, the secreted chondroitin sulfate proteoglycans of the developing nervous system, are released into the amniotic fluid (AF) of fetal rats displaying spinal cord defects. In contrast to normal controls, elevated AF levels of neurocan and phosphacan were detected in MMC fetuses early in gestation and continued to increase during MMC progression, reaching the highest level in near-term fetuses. The molecular forms of neurocan and phosphacan identified in the AF of MMC fetuses and those found in MMC spinal cords were qualitatively similar. In summary, this is the first report demonstrating the presence of neurocan and phosphacan in the AF of MMC fetuses. The identification of elevated levels of neurocan and phosphacan in the AF of MMC fetuses provides two prospective biomarkers with the potential for early prenatal diagnosis of open NTDs.


Assuntos
Defeitos do Tubo Neural , Neurocam , Gravidez , Feminino , Ratos , Animais , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Líquido Amniótico , Biomarcadores , Defeitos do Tubo Neural/diagnóstico
19.
EMBO J ; 42(10): e111806, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36988334

RESUMO

Spatially organized reaction dynamics between proto-oncogenic epidermal growth factor receptor (EGFR) and protein tyrosine phosphatases determine EGFR phosphorylation dynamics in response to growth factors and thereby cellular behavior within developing tissues. We show that the reaction dynamics of mutual inhibition between RPTPγ phosphatase and autocatalytic ligandless EGFR phosphorylation enable highly sensitive promigratory EGFR signaling responses to subnanomolar EGF levels, when < 5% receptors are occupied by EGF. EGF thereby triggers an autocatalytic phospho-EGFR reaction by the initial production of small amounts of phospho-EGFR through transient, asymmetric EGF-EGFR2 dimers. Single cell RPTPγ oxidation imaging revealed that phospho-EGFR induces activation of NADPH oxidase, which in turn inhibits RPTPγ-mediated dephosphorylation of EGFR, tilting the autocatalytic RPTPγ/EGFR toggle switch reaction towards ligandless phosphorylated EGFR. Reversibility of this reaction to EGF is maintained by the constitutive phosphatase activity of endoplasmic reticulum-associated TCPTP. This RPTPγ/EGFR reaction at the plasma membrane causes promigratory signaling that is separated from proliferative signaling induced by accumulated, liganded, phosphorylated EGF-EGFR in endosomes. Accordingly, loss of RPTPγ results in constitutive promigratory signaling from phosphorylated EGFR monomers. RPTPγ is thus a suppressor of promigratory oncogenic but not of proliferative EGFR signaling.


Assuntos
Fator de Crescimento Epidérmico , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Receptores ErbB/metabolismo , Transdução de Sinais , Fosforilação , Oxirredução
20.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982638

RESUMO

Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. Cerebellar lipid rafts are cell surface ganglioside microdomains for the attachment of GPI-anchored neural adhesion molecules and downstream signaling molecules such as Src-family kinases and heterotrimeric G proteins. In this review, we summarize our recent findings on signaling in ganglioside GD3 rafts of cerebellar granule cells and several findings by other groups on the roles of lipid rafts in the cerebellum. TAG-1, of the contactin group of immunoglobulin superfamily cell adhesion molecules, is a phosphacan receptor. Phosphacan regulates the radial migration signaling of cerebellar granule cells, via Src-family kinase Lyn, by binding to TAG-1 on ganglioside GD3 rafts. Chemokine SDF-1α, which induces the tangential migration of cerebellar granule cells, causes heterotrimeric G protein Goα translocation to GD3 rafts. Furthermore, the functional roles of cerebellar raft-binding proteins including cell adhesion molecule L1, heterotrimeric G protein Gsα, and L-type voltage-dependent calcium channels are discussed.


Assuntos
Glicoesfingolipídeos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Glicoesfingolipídeos/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Cerebelo/metabolismo , Microdomínios da Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...